Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition
نویسندگان
چکیده
Most land plants live in association with arbuscular mycorrhizal (AM) fungi and rely on this symbiosis to scavenge phosphorus (P) from soil. The ability to establish this partnership has been lost in some plant lineages like the Brassicaceae, which raises the question of what alternative nutrition strategies such plants have to grow in P-impoverished soils. To understand the contribution of plant-microbiota interactions, we studied the root-associated fungal microbiome of Arabis alpina (Brassicaceae) with the hypothesis that some of its components can promote plant P acquisition. Using amplicon sequencing of the fungal internal transcribed spacer 2, we studied the root and rhizosphere fungal communities of A. alpina growing under natural and controlled conditions including low-P soils and identified a set of 15 fungal taxa consistently detected in its roots. This cohort included a Helotiales taxon exhibiting high abundance in roots of wild A. alpina growing in an extremely P-limited soil. Consequently, we isolated and subsequently reintroduced a specimen from this taxon into its native P-poor soil in which it improved plant growth and P uptake. The fungus exhibited mycorrhiza-like traits including colonization of the root endosphere and P transfer to the plant. Genome analysis revealed a link between its endophytic lifestyle and the expansion of its repertoire of carbohydrate-active enzymes. We report the discovery of a plant-fungus interaction facilitating the growth of a nonmycorrhizal plant under native P-limited conditions, thus uncovering a previously underestimated role of root fungal microbiota in P cycling.
منابع مشابه
Effects of Arbuscular Mycorrhiza and Phosphorus Supply on the Growth of Perennial Ryegrass
Aim: The basic aim of this thesis was to disentangle phosphorus status-dependent and -independent effects of arbuscular mycorrhizal fungi (AMF, Glomus hoi) on the components of plant growth: morphology and assimilation rates, in perennial ryegrass (Lolium perenne L.). Materials & Methods: In a first experiment, I assessed phosphorus response functions of leaf and plant morphological components ...
متن کاملContinuum of root-fungal symbioses for plant nutrition.
Plants accommodate a specific microbiota on and in their roots that, similar to the microbial communities in human or animal guts, supports the host in nutrient acquisition (1). Beneficial associations with fungi are widespread in the plant kingdom and probably best known are so-called mycorrhizal symbioses (Fig. 1), which are formed between soil fungi and ∼90% of land plants (2). In these part...
متن کاملComplete Arabis alpina chloroplast genome sequence and insight into its polymorphism☆
The alpine plant Arabis alpina (alpine rock-cress) is a thoroughly studied species in the fields of perennial plant flowering regulation, phylogeography, and adaptation to harsh alpine climatic conditions. We report the complete A. alpina chloroplast genome sequence obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The A. alpina cp circular genome ...
متن کاملGrowth model for arbuscular mycorrhizal fungi
In order to quantify the contribution of arbuscular mycorrhizal (AM) fungi to plant phosphorus nutrition, the development and extent of the external fungal mycelium and its nutrient uptake capacity are of particular importance. We develop and analyse a model of the growth of AM fungi associated with plant roots, suitable for describing mechanistically the effects of the fungi on solute uptake b...
متن کاملVesicular-arbuscular (VA) mycorrhizae improve salinity tolerance in pre-inoculation subterranean clover (Trifolium subterraneum) seedlings
Effects of the mycorrhizal fungus Glomus intraradices on establishment of subterranean clover (Trifolium subterraneum L.) seedlings in saline conditions were studied in a glasshouse experiment. Growth and nutrient uptake were determined 10, 20 and 30 days after transplanting of mycorrhizal and nonmycorrhizal matched seedlings into soils with five different levels of salinity. Mycorrhizal plants...
متن کامل